Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
J Assist Reprod Genet ; 41(4): 1087-1096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321265

RESUMO

PURPOSE: Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS: FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS: A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION: FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.


Assuntos
Exossomos , Líquido Folicular , MicroRNAs , Reserva Ovariana , Humanos , Feminino , Líquido Folicular/metabolismo , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Reserva Ovariana/genética , Adulto , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Transdução de Sinais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica/genética , Perfilação da Expressão Gênica
2.
Cytokine ; 172: 156400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839333

RESUMO

BACKGROUND: WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS: An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS: We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS: WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.


Assuntos
Endometriose , Fator Estimulador de Colônias de Macrófagos , Humanos , Feminino , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Endometriose/metabolismo , Receptores de Estrogênio/metabolismo , Macrófagos/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Apoptose , Estrogênios/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
3.
Cell Tissue Res ; 394(2): 257-267, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603064

RESUMO

Granulosa cells (GCs), as the basic components of ovarian tissue, play an indispensable role in maintaining normal ovarian functions such as hormone synthesis and ovulation. The abnormality of GCs often leads to ovarian endocrine disorders, which exert a negative effect on life quality and life expectancy. However, the pathogenesis and treatment of diseases are still poorly understood. Exosomes contain regulatory molecules and can transmit biological information in cell interaction. The role of exosomes in GCs has been studied extensively. This review summarizes the regulatory function of exosomes in GCs, as well as their participation in etiopathogenesis and their promising application in treatment when it comes to ovarian endocrine diseases, which can help us better understand ovarian diseases from the perspective of GCs.


Assuntos
Exossomos , Síndrome do Ovário Policístico , Humanos , Feminino , Células da Granulosa/patologia , Comunicação Celular
4.
Acta Pharmacol Sin ; 44(12): 2432-2444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37507430

RESUMO

Polycystic ovary syndrome (PCOS) is a disorder with endocrinal and metabolic problems in reproductive aged women. Evidence shows that PCOS is in a high prone trend to develop kidney diseases. In this study, we investigated the mediators responsible for PCOS-related kidney injury. We found that tumor necrosis factor (TNF-α) levels were significantly increased in serum and primary cultured granulosa cells (GCs) from PCOS patients. Serum TNF-α levels were positively correlated with serum testosterone and luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, suggesting its positive role in the severity of PCOS. Serum TNF-α levels were also positively correlated with the levels of urinary KapU, LamU, α1-MU and ß2-MU, the markers for renal tubular cell-derived proteinuria. We established a PCOS mouse model by resection of the right kidney, followed by daily administration of dihydrotestosterone (DHT, 27.5 µg, i.p.) from D7 for 90 days. We found that TNF-α levels were significantly increased in the ovary and serum of the mice, accompanied by increased renal tubular cell apoptosis, inflammation and fibrosis in kidneys. Furthermore, the receptor of TNF-α, tumor necrosis factor receptor 1 (TNFR1), was significantly upregulated in renal tubular cells. We treated human ovarian granulosa-like tumor cells (KGN) with DHT (1 µg/ml) in vitro, the conditioned medium derived from the granulosa cell culture greatly accelerated apoptotic injury in human proximal tubular epithelial cells (HKC-8), which was blocked after knockdown of TNF-α in KGN cells. Furthermore, knockdown of TNFR1 in renal tubular epithelial cells greatly ameliorated cell injury induced by granulosa cell-derived conditioned medium. These results suggest that serum TNF-α plays a key role in mediating inflammation and apoptosis in renal tubular cells associated with PCOS-related kidney injury.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Camundongos , Animais , Adulto , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Meios de Cultivo Condicionados/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Inflamação/metabolismo , Rim/metabolismo , Apoptose
5.
Prev Med ; 174: 107634, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473924

RESUMO

Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy among females of reproductive age. Due to its unclear etiopathogenesis, it is of vital significance to take a deeper understanding of molecular mechanisms underlying PCOS. Quantitative real-time PCR (RT-qPCR) and western blot were applied for detection of gene expression and protein expression individually. Cell Counting Kit-8 (CCK-8) and colony formation assays were used for the evaluation of cell proliferation while Caspase-3/9 activity was measured for the assessment of cell apoptosis. We found that FOXM1 was overexpressed in ovarian granulosa cell (OGC) of patients with PCOS. Functionally, upregulation of FOXM1 promotes the proliferative ability of PCOS-OGC cells. As for mechanism, FOXM1 exerts its functions in PCOS-OGC cell through activation of the Wnt signaling pathway. More importantly, a novel FABP5 inhibitor, SBFI-26, was verified to downregulate the expression of FOXM1 to impede the proliferation of PCOS-OGC cells. In addition, SBFI-26 inactivates Wnt signaling pathway in PCOS-OGC cells. FABP5 inhibitor SBFI-26 regulates FOXM1 expression and Wnt signaling pathway in OGC of patients with PCOS, which might provide a new perspective into PCOS treatment.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Via de Sinalização Wnt , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Apoptose , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo
6.
Clin. transl. oncol. (Print) ; 25(7): 2090-2098, jul. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-222380

RESUMO

Background Granulosa cell ovarian tumor (GCT) is characterized by a pathognomonic mutation in the FOXL2 gene (402 C > G) that leads to an overactivation of steroidogenesis. CYP17 is a key enzyme in such process and can be inhibited by ketoconazole. Methods We designed a phase II clinical trial to assess the efficacy of ketoconazole in advanced GCT and conducted several in vitro studies to support the clinical findings. Results From October 1st 2012 to January 31st 2014, six evaluable patients were recruited in ten hospitals of the Spanish Group for Transversal Oncology and Research in Orphan and Infrequent Tumors” (GETTHI). FOXL2 (402C > G) mutation was confirmed in three; two cases were wild type and it could not be assessed in one. No objective response by RECIST was observed, but five cases achieved stable disease longer than 12 months. Median progression-free survival was 14.06 months (CI 95% 5.43–22.69) for the whole study population (3.38 and 13.47 months for wild-type cases and 14.06, 20.67 and 26.51 for those with confirmed FOXL2 mutation). Median overall survival was 22·99 months (CI 95% 8.99–36.99). In vitro assays confirmed the activity of ketoconazole in this tumor and suggested potential synergisms with other hormone therapies. Conclusion Ketoconazole has shown activity in advanced GCT in clinical and in vitro studies. Based on these data, an orphan designation was granted by the European Medicines Agency for ketoconazole in GCT (EU/3/17/1857) (AU)


Assuntos
Humanos , Feminino , Cetoconazol/uso terapêutico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Neoplasias Ovarianas/patologia
7.
Clin Sci (Lond) ; 137(6): 453-468, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36752638

RESUMO

Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women of reproductive age, causes anovulatory infertility. Increased apoptosis of granulosa cells has been identified as one of the key factors contributing to abnormal follicular development. Ferredoxin 1 (FDX1) encodes a small ferredoxin that is involved in the reduction in mitochondrial cytochromes and the synthesis of various steroid hormones and has the potential to influence the function of granulosa cells. In the present study, we aimed to determine the relationship between FDX1 and follicular granulosa cell function. To this end, we investigated the difference between FDX1 expression in the granulosa cells of 50 patients with PCOS and that of the controls. Furthermore, we sought to elucidate the role and mechanism of FDX1 in PCOS granulosa cells by establishing a mouse PCOS model with dehydroepiandrosterone and KGN (a steroidogenic human granulosa cell-like tumor cell line). The results indicated significant up-regulation of FDX1 in the granulosa cells after androgen stimulation. Knockdown of FDX1 promoted the proliferation of KGN and inhibited apoptosis. Moreover, FDX1 could regulate autophagy by influencing the autophagy proteins ATG3 and ATG7. Our results demonstrated that FDX1 plays a critical role in female folliculogenesis by mediating apoptosis, autophagy, and proliferation. Therefore, FDX1 may be a potential prognostic factor for female infertility.


Assuntos
Síndrome do Ovário Policístico , Camundongos , Animais , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ferredoxinas/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Apoptose , Autofagia , Proliferação de Células
8.
J Reprod Immunol ; 155: 103789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603466

RESUMO

Follicular atresia was initiated with the apoptosis of granulosa cells (GCs) mostly mediated by oxidative stress (OS). Our previous studies found that the number of CD8+ T cells and proportion of CD8+/CD4+ T cells increased in the follicles of diminished ovary reserve (DOR). However, the mechanism was still poorly explored. Herein, our results showed that the level of H2O2 in follicular fluid (FF) and reactive oxygen species (ROS) in GCs were increased, while the expression of SOD1, SOD2 and GPX1 was down-regulated in GCs with DOR. In addition, we found that OS within a certain range promoted the expression of CCL5 in GCs, which facilitated the infiltration of CD8+ T cells to the follicles. In vitro co-culture experiment showed that CD8+ T cells inhibited GCs proliferation and promoted their apoptosis through intrinsic apoptosis pathway. Maraviroc, the CCR5 antagonist, alleviated CCL5-induced immune attack of CD8+ T cells. Our results indicated that ROS-CCL5 axis recruited CD8+ T cells into FF resulting in the apoptosis of GCs in DOR. This has further implications for the understanding of the pathology of DOR and searching for the therapeutic management of this disease.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CCL5 , Ovário , Espécies Reativas de Oxigênio , Feminino , Humanos , Apoptose , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL5/metabolismo , Atresia Folicular , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Peróxido de Hidrogênio/metabolismo , Ovário/metabolismo , Ovário/patologia , Espécies Reativas de Oxigênio/metabolismo
9.
Exp Cell Res ; 424(1): 113473, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634743

RESUMO

Long non-coding RNA (lncRNA) anomalies cause early ovarian failure. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was down-regulated in premature ovarian failure (POF) mice and connected to the illness, however, the mechanism remained unclear. The levels of gene and protein were measured by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Follicle stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) levels were determined using enzyme-linked immunosorbent assay (ELISA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry were used to determine cell viability and apoptosis. The interaction of NEAT1, miR-654, and stanniocalcin-2 (STC2) was verified by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assays. The results showed NEAT1 and STC2 down-regulated, while miR-654 up-regulated in POF mice. Overexpression of NEAT1 reduced apoptosis and autophagy in cyclophosphamide (CTX)-treated ovarian granulosa cells (OGCs), and Bax, cleaved-caspase3, LC3B, LC3II/LC3I ratio were decreased and Bcl-2 and p62 were raised. NEAT1 suppressed miR-654 expression by directly targeting miR-654. The inhibition of NEAT1 overexpression on apoptosis and autophagy in OGCs was reversed by miR-654 mimics. STC2 was a target gene of miR-654, and miR-654 inhibitor reduced the apoptosis and autophagy by regulating the STC2/MAPK axis. To sum up, NEAT1 reduced miR-654 expression and modulated the STC2/MAPK pathway to decrease apoptosis and autophagy in POF, indicating a potential therapeutic target.


Assuntos
Apoptose , Autofagia , Células da Granulosa , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Apoptose/genética , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Células da Granulosa/metabolismo , Células da Granulosa/patologia
10.
Clin Transl Oncol ; 25(7): 2090-2098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36708371

RESUMO

BACKGROUND: Granulosa cell ovarian tumor (GCT) is characterized by a pathognomonic mutation in the FOXL2 gene (402 C > G) that leads to an overactivation of steroidogenesis. CYP17 is a key enzyme in such process and can be inhibited by ketoconazole. METHODS: We designed a phase II clinical trial to assess the efficacy of ketoconazole in advanced GCT and conducted several in vitro studies to support the clinical findings. RESULTS: From October 1st 2012 to January 31st 2014, six evaluable patients were recruited in ten hospitals of the Spanish Group for Transversal Oncology and Research in Orphan and Infrequent Tumors" (GETTHI). FOXL2 (402C > G) mutation was confirmed in three; two cases were wild type and it could not be assessed in one. No objective response by RECIST was observed, but five cases achieved stable disease longer than 12 months. Median progression-free survival was 14.06 months (CI 95% 5.43-22.69) for the whole study population (3.38 and 13.47 months for wild-type cases and 14.06, 20.67 and 26.51 for those with confirmed FOXL2 mutation). Median overall survival was 22·99 months (CI 95% 8.99-36.99). In vitro assays confirmed the activity of ketoconazole in this tumor and suggested potential synergisms with other hormone therapies. CONCLUSION: Ketoconazole has shown activity in advanced GCT in clinical and in vitro studies. Based on these data, an orphan designation was granted by the European Medicines Agency for ketoconazole in GCT (EU/3/17/1857). GOV IDENTIFIER: NCT01584297.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Cetoconazol/uso terapêutico , Esteroide 17-alfa-Hidroxilase/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inibidores Enzimáticos , Células da Granulosa/metabolismo , Células da Granulosa/patologia
11.
Drug Dev Res ; 84(2): 226-237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621953

RESUMO

This study was implemented to address the role of Roflumilast in polycystic ovary syndrome (PCOS) as well as to discuss its reaction mechanism in vivo and in vitro. In vivo, mice were administrated with 6 mg dehydroepiandrosterone (DHEA) per 100 g body weight and fed with 60% high fat diet to induce PCOS. The expression of phosphodiesterases 4 (PDE4) was assessed with RT-qPCR. The ovary pathology was observed by hematoxylin and eosin staining and follicles were counted. Enzyme-linked immunosorbent assay was adopted for the estimation of progesterone, testosterone and inflammatory factors and lipid accumulation was observed by Oil Red O staining. With the application of reverse transcription-quantitative PCR (RT-qPCR) and western blot, the messenger RNA (mRNA) and protein expressions of low-density lipoprotein receptor (LDLR) was resolved. In vitro, Cell counting kit-8 and flow cytometry analysis were applied for the assessment of cell proliferation and apoptosis. The proliferation- and apoptosis-related proteins were appraised with western blot. Additionally, the expressions of PDE-4 at both mRNA and protein levels were tested with RT-qPCR and western blot. Here, it was discovered that PDE4 was greatly elevated in PCOS mice and DHEA-induced ovarian granulosa cells (KGN). In PCOS mice, PDE4 was negative correlated with progesterone and had positive correlation with testosterone. Roflumilast could enhanced progesterone expression, increased the number of primary follicles, preantral follicles and antral follicles but reduced testosterone and decreased the number of cystic follicles in PCOS mice. It was also testified that Roflumilast could inhibit the release of inflammatory factors and lipid accumulation in PCOS mice. Besides, the proliferation of DHEA-induced KGN cells was enhanced while the apoptosis was declined by Roflumilast, accompanied by elevated contents of PCNA, Ki67 and antiapoptotic protein Bcl-2. Collectively, Roflumilast inhibited inflammation and lipid accumulation in PCOS mice to improve ovarian function and reduce DHEA-induced granulosa cell apoptosis.


Assuntos
Inibidores da Fosfodiesterase 4 , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Progesterona/efeitos adversos , Progesterona/metabolismo , Inibidores da Fosfodiesterase 4/efeitos adversos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Testosterona/efeitos adversos , Testosterona/metabolismo , Inflamação/metabolismo , Apoptose , Desidroepiandrosterona/efeitos adversos , Desidroepiandrosterona/metabolismo , Lipídeos
12.
Acupunct Med ; 41(1): 27-37, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35475376

RESUMO

BACKGROUND: Premature ovarian failure (POF) is a type of pathological aging, which seriously interferes with the fertility of affected women. Electroacupuncture (EA) may have a beneficial effect; however, its mechanism of action is unknown. The purpose of this study was to determine the effect of EA on ovarian function in ovarian granulosa cells (OGCs) in a cyclophosphamide (CTX)-induced mouse model of POF. METHODS: Mice were divided into three groups: wild type (WT) group, CTX group and CTX + EA group. EA was administered under isoflurane anesthesia at CV4, ST36 and SP6 for 30 min every 2 days, 2-3 times per week for a total of 4 weeks. Effects of EA on ovarian weight and level of estrogen were examined. The mRNA and protein expression levels of cell cycle-associated proteins were detected and mRNA modifications were analyzed. RESULTS: EA significantly increased ovarian weight and reduced the proportion of atretic follicles in mice with CTX-induced POF (p < 0.05). EA increased the level of estrogen in the peripheral blood of mice and inhibited the modification of total mRNA N4-acetylcytidine (ac4C). A significant increase in the expression of P16 and N-acetyltransferase 10 (NAT10) and a significant decrease in the expression of Cyclin D (CCND1) and cyclin-dependent kinase 6 (CDK6) were observed in the OGCs of POF mice (p<0.05). After EA, P16 and NAT10 expression was decreased, and CCND1 and CDK6 expression was increased. Finally, EA reduced the ac4C modification of P16 mRNA-specific sites in the OGCs of POF mice. CONCLUSION: This study demonstrated that EA promoted the repair of the ovarian microenvironment by inhibiting the ac4C modification of P16 mRNA to decrease its stability and expression intensity, and by altering the activity of the P16/CDK6/CCND1 axis in OGCs.


Assuntos
Eletroacupuntura , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/terapia , RNA Mensageiro/genética , RNA Mensageiro/efeitos adversos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Estrogênios/efeitos adversos
13.
Clinics (Sao Paulo) ; 77: 100119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194922

RESUMO

OBJECTIVES: This study sought to further verify the protective mechanism of Melatonin (MT) against ovarian damage through animal model experiments and to lay a theoretical and experimental foundation for exploring new approaches for ovarian damage treatment. METHOD: The wet weight and ovarian index of rat ovaries were weighted, and the morphology of ovarian tissues and the number of follicles in the pathological sections of collected ovarian tissues were recorded. And the serum sex hormone levels, the key proteins of the autophagy pathway (PI3K, AKT, mTOR, LC3II, LC3I, and Agt5) in rat ovarian tissues, as well as the viability and mortality of ovarian granulosa cells in each group were measured by ELISA, western blotting, CCK8 kit and LDH kit, respectively. RESULTS: The results showed that MT increased ovarian weight and improved the ovarian index in ovarian damage rats. Also, MT could improve autophagy-induced ovarian tissue injury, increase the number of primordial follicles, primary follicles, and sinus follicles, and decrease the number of atretic follicles. Furthermore, MT upregulated serum AMH, INH-B, and E2 levels downregulated serum FSH and LH levels in ovarian damage rats and activated the PI3K/AKT/mTOR signaling pathway. Besides, MT inhibited autophagic apoptosis of ovarian granulosa cells and repressed the expression of key proteins in the autophagic pathway and reduced the expression levels of Agt5 and LC3II/I. CONCLUSIONS: MT inhibits granulosa cell autophagy by activating the PI3K/Akt/mTOR signaling pathway, thereby exerting a protective effect against ovarian damage.


Assuntos
Melatonina , Ovário , Animais , Apoptose , Autofagia , Feminino , Hormônio Foliculoestimulante , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ratos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
14.
Mol Cell Biol ; 42(9): e0010722, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938797

RESUMO

HAS2 antisense RNA 1 (HAS2-AS1) is a long noncoding RNA that has increased expression in mature granulosa cells (GCs) and contributes to cumulus expansion by regulating HAS2 expression. However, the roles of HAS2-AS1 during the pathological process of polycystic ovary syndrome (PCOS) are still unclear. This study investigated the roles of HAS2-AS1 in patients with PCOS. Here, a significant upregulation of HAS2-AS1 was found in the primary GCs from patients with PCOS, which was positively correlated with the level of the protein HAS2. The knockdown of HAS2 restored the upregulation of HAS2-AS1 in promoting migration but could not restore the effects of HAS2-AS1 overexpression in promoting proliferation and repressing apoptosis. Transforming growth factor ß (TGF-ß) upregulated HAS2-AS1 levels, while HAS2-AS1 functioned as a feedback inhibition factor repressing TGF-ß signaling by inhibiting TGF-ß receptor type 2 (TGFBR2) expression. HAS2-AS1 bonded with EZH2 and guided the polycomb complex 2 to the TGFBR2 promoter region. HAS2-AS1 overexpression induced H3K27 hypermethylation in the TGFBR2 promoter region and then repressed TGFBR2 transcription in KGN cells and primary GCs. In conclusion, we identified for the first time that HAS2-AS1 is upregulated in patients with PCOS and represses TGF-ß signaling via inducing TGFBR2 promoter region hypermethylation, which allowed us to explore the pathological processes of PCOS.


Assuntos
Células da Granulosa/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Proliferação de Células , Feminino , Células da Granulosa/patologia , Humanos , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
15.
Mol Hum Reprod ; 28(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35639746

RESUMO

Endometriosis is a common disease in women of childbearing age and is closely associated with female infertility. However, the pathogenesis of endometriosis-related infertility is still not fully understood. Prohibitin 1 (PHB1), a highly conserved protein related to mitochondrial function, is differentially expressed in the endometrium of patients with endometriosis. However, the role of PHB1 in glucose metabolism in granulosa cells remains unclear. In this study, we investigated whether PHB1 expression and glucose metabolism patterns differ in the granulosa cells of patients with endometriosis and those of patients serving as controls. We then evaluated these changes after PHB1 was upregulated or downregulated in the human granulosa cell line (KGN) using a lentivirus construct. In the granulosa cells of patients with endometriosis, significantly elevated PHB1 expression, increased glucose consumption and lactic acid production, as well as aberrant expression of glycolysis-related enzymes were found compared to those without endometriosis (P < 0.05). After PHB1 expression was upregulated in KGN cells, and the expression of enzymes related to glucose metabolism, glucose consumption and lactic acid production was strikingly increased compared to controls (P < 0.05). The opposite results were found when PHB1 expression was downregulated in KGN cells. Additionally, the cell proliferation and apoptosis rates, ATP synthesis, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were significantly altered after down-regulation of PHB1 expression in KGN cells (P < 0.05). This study suggested that PHB1 plays a pivotal role in mitigating the loss of energy caused by impaired mitochondrial function in granulosa cells of patients with endometriosis, which may explain, at least in part, why the quality of oocytes in these patients is compromised.


Assuntos
Endometriose , Glucose , Células da Granulosa , Infertilidade , Proibitinas , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Feminino , Glucose/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Infertilidade/genética , Infertilidade/metabolismo , Infertilidade/patologia , Ácido Láctico/metabolismo , Proibitinas/biossíntese , Proibitinas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Cell Commun Signal ; 20(1): 61, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534864

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. METHODS AND RESULTS: In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. CONCLUSIONS: In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Proliferação de Células , Feminino , Líquido Folicular/metabolismo , Glicólise , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Lactatos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia
17.
Int Immunopharmacol ; 107: 108717, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334358

RESUMO

Gut microbiota dysbiosis is critical in the etiology of polycystic ovary syndrome (PCOS). However, the mechanisms of gut microbiota in PCOS pathogenesis have not been fully elucidated. We aimed to explore the role of gut microbiota-derived macrophage pyroptosis in PCOS. This study conducted dehydroepiandrosterone (DHEA) induced PCOS mice model, 16S rDNA sequencing, western blot, genetic knocking out, transcriptome and translatome profiling, et al. to evaluate the underlying mechanisms. 16S rDNA sequencing showed reduced gut Akkermansia and elevated gram-negative bacteria (Desulfovibrio and Burkholderia) abundances in DHEA induced PCOS mice, which was accompanied by increased serum lipopolysaccharide (LPS). LPS could induce macrophage pyroptosis in mice ovaries, also activated in PCOS. Gasdermin D (GSDMD) is the final executor of macrophage pyroptosis. We demonstrated that Gsdmd knockout in mice could dramatically ameliorate PCOS. Mechanistically, transcriptome and translatome profiling revealed that macrophage pyroptosis disrupted estrogen production and promoted apoptosis of granulosa cells. Interferon (IFN)-γ, which was elevated in PCOS mice serum and ovaries, enhanced macrophage pyroptosis and exacerbated its effect on estrogen receptor in granulosa cells. Inspiringly, we identified that disulfiram and metformin could augment gut Akkermansia abundance, reduce serum IFN-γ level, inhibit macrophage pyroptosis in ovaries, therefore ameliorating PCOS. Collectively, this study emphasizes that macrophage pyroptosis, which was induced by gut microbiota dysbiosis and enhanced by IFN-γ, plays a key role in PCOS pathogenesis through estrogen synthesis dysfunction and apoptosis of granulosa cells. Disulfiram and metformin, which enhanced gut Akkermansia abundance and suppressed macrophage pyroptosis, may be considered as potential therapeutic strategies for PCOS.


Assuntos
Microbioma Gastrointestinal , Metformina , Síndrome do Ovário Policístico , Animais , Apoptose , DNA Ribossômico/farmacologia , Desidroepiandrosterona/efeitos adversos , Dissulfiram/efeitos adversos , Disbiose/microbiologia , Estrogênios/farmacologia , Feminino , Microbioma Gastrointestinal/fisiologia , Células da Granulosa/patologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Metformina/farmacologia , Camundongos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Piroptose
18.
Reprod Biol Endocrinol ; 20(1): 39, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219326

RESUMO

BACKGROUND: Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells. METHOD: First, cisplatin was used to establish a granulosa cell injury model. Then, the MenSCs and injured granulosa cell coculture model and POF mouse model were established in this study to explore the role of FTO. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, studies were also conducted to clarify the regulatory mechanism of FTO in granulosa cells. RESULTS: MenSCs coculture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation restored the expression of FTO in the ovaries of POF mice. Overexpression of FTO restored the injured cell proliferation and decreased apoptosis by regulating the expression of BNIP3. Down-regulation of FTO got the opposite results. CONCLUSIONS: In the treatment of MenSCs, FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3. Meanwhile, FTO may provide new insight into therapeutic targets for the chemotherapy-induced POF.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Antineoplásicos/efeitos adversos , Citoproteção/genética , Células da Granulosa/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Feminino , Células da Granulosa/patologia , Células da Granulosa/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia
19.
Exp Cell Res ; 412(1): 113002, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973261

RESUMO

The inflammatory microenvironment has been demonstrated to play a role in folliculogenesis, ovulation and premature ovarian failure (POF), as well as infertility. In this study, we aimed to explore the role of inflammation in modulating growth and apoptosis in granulosa cells (GCs), the main components of ovarian follicles. ELISA was used to analyze the levels of inflammatory factors (IL-1ß, IL-4, IL-6 and IL-10) in follicular fluid samples and GCs derived from POF patients and healthy normal individuals. CCK-8, flow cytometry and TUNEL assays were used to assess the effect of IL-4 on GC growth and apoptosis. Western blotting was used to examine the effect of IL-4 on the activation of PI3K/Akt, Erk1/2 and Jnk signaling. The results showed that IL-4, IL-1ß and IL-6 levels were increased in follicular fluid samples and GCs derived from POF patients compared with those from healthy individuals. GC growth was weakened when cells were treated with IL-4, while apoptosis was increased. In addition, IL-4 increased the level of p-Akt/Akt in GCs. In addition, LY294002, an inhibitor of PI3K, abolished the effect of IL-4 by inhibiting GC growth and promoting apoptosis. In summary, this study demonstrated that IL-4 levels were increased in POF samples and that IL-4 could inhibit GC growth and induce GC apoptosis by activating PI3K/Akt signaling.


Assuntos
Células da Granulosa/metabolismo , Células da Granulosa/patologia , Interleucina-4/metabolismo , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/patologia , Adulto , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Microambiente Celular , Cromonas/farmacologia , Feminino , Líquido Folicular/metabolismo , Células da Granulosa/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Interleucina-4/farmacologia , Interleucina-6/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Bioengineered ; 13(2): 2173-2180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034562

RESUMO

Translation regulatory long non-coding RNA 1 (TRERNA1) plays critical roles in cancer biology. We predicted the direct interaction of TRERNA1 with microRNA (miR)-23a, which promotes granulosa apoptosis. Granulosa apoptosis is involved in premature ovarian failure (POF). This study was therefore carried out to explore the involvement of TRERNA1 and miR-23a in POF. The expression of TRERNA1 and miR-23a in POF and control groups were detected by RT-qPCRs. The subcellular locations of TRERNA1 in granulosa cell line COV434 was detected by subcellular fractionation assay. The interaction between TRERNA1 and miR-23a was predicted using IntaRNA2.0. The direct interaction between COV434 and miR-23a was explored with RNA pull-down assay. In granulosa cells, the direct interaction between TRERNA1 and miR-23a was verified by overexpression assay. Cell apoptosis assay was performed to evaluate cell apoptosis. Both TRERNA1 and miR-23a were downregulated in POF. In addition, TRERNA1 was detected in both cytoplasm and nuclear samples of granulosa cells, and directly interacted with miR-23a. TRERNA1 did not affect the expression of miR-23a in granulosa cells, while TRERNA1 suppressed the role of miR-23a in enhancing cell apoptosis. In conclusion, TRERNA1 may sponge miR-23a to suppress granulosa cell apoptosis in POF.


Assuntos
Apoptose , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Insuficiência Ovariana Primária/metabolismo , RNA Longo não Codificante/metabolismo , Adulto , Linhagem Celular Tumoral , Feminino , Células da Granulosa/patologia , Humanos , MicroRNAs/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...